Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
2.
Sleep Med ; 118: 63-70, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613858

ABSTRACT

OBJECTIVES: The study aimed to explore the underlying mechanisms of OSA-related cognitive impairment by investigating the altered topology of brain white matter networks in children with OSA. METHODS: Graph theory was used to examine white matter networks' network topological properties in 46 OSA and 31 non-OSA children. All participants underwent MRI, polysomnography, and cognitive testing. The effects of the obstructive apnea-hypopnea index (OAHI) on topological properties of white matter networks and network properties on cognition were studied using hierarchical linear regression. Mediation analyses were used to explore whether white matter network properties mediated the effects of OAHI on cognition. RESULTS: Children with OSA had significantly higher assortativity than non-OSA children. Furthermore, OAHI was associated with the nodal properties of several brain regions, primarily in the frontal and temporal lobes. The relationship between OAHI and verbal comprehension index was mediated through clustering coefficients in the right temporal pole of the superior temporal gyrus. CONCLUSIONS: OSA affects the development of white matter networks in children's brains. Besides, the mediating role of white matter network properties between the OAHI and the verbal comprehension index provided neuroimaging evidence of impaired cognitive function in children with OSA.


Subject(s)
Magnetic Resonance Imaging , Polysomnography , Sleep Apnea, Obstructive , White Matter , Humans , Male , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/complications , White Matter/diagnostic imaging , White Matter/pathology , Female , Child , Cognition/physiology , Brain/diagnostic imaging , Brain/pathology , Neuropsychological Tests/statistics & numerical data , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology
3.
BMC Pediatr ; 24(1): 190, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493129

ABSTRACT

BACKGROUND: Kawasaki disease (KD) is a systemic vasculitis accompanied by many systemic physiological and biochemical changes. Elucidating its molecular mechanisms is crucial for diagnosing and developing effective treatments. NLR Family CARD Domain Containing 4 (NLRC4) encodes the key components of inflammasomes that function as pattern recognition receptors. The purpose of this study was to investigate the potential of NLRC4 methylation as a biomarker for KD. METHODS: In this study, pyrosequencing was utilized to analyze NLRC4 promoter methylation in blood samples from 44 children with initial complete KD and 51 matched healthy controls. Methylation at five CpG sites within the NLRC4 promoter region was evaluated. RESULTS: Compared to controls, NLRC4 methylation significantly decreased in KD patients (CpG1: p = 2.93E-06; CpG2: p = 2.35E-05; CpG3: p = 6.46E-06; CpG4: p = 2.47E-06; CpG5: p = 1.26E-05; average methylation: p = 5.42E-06). These changes were significantly reversed after intravenous immunoglobulin (IVIG) treatment. ROC curve analysis demonstrated remarkable diagnostic capability of mean NLRC4 gene methylation for KD (areas under ROC curve = 0.844, sensitivity = 0.75, p = 9.61E-06, 95% confidence intervals were 0.762-0.926 for mean NLRC4 methylation). In addition, NLRC4 promoter methylation was shown to be significantly negatively correlated with the levels of central granulocyte percentage, age, mean haemoglobin quantity and mean erythrocyte volume. Besides, NLRC4 promoter methylation was positively correlated with lymphocyte percentage, lymphocyte absolute value. CONCLUSIONS: Our work revealed the role of peripheral NLRC4 hypomethylation in KD pathogenesis and IVIG treatment response, could potentially serve as a treatment monitoring biomarker, although its precise functions remain to be elucidated.


Subject(s)
Immunoglobulins, Intravenous , Mucocutaneous Lymph Node Syndrome , Child , Humans , Immunoglobulins, Intravenous/therapeutic use , Case-Control Studies , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/genetics , DNA Methylation , Biomarkers , Calcium-Binding Proteins/genetics , CARD Signaling Adaptor Proteins/genetics
4.
Biopharm Drug Dispos ; 45(2): 83-92, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492211

ABSTRACT

AST-001 is a chemically synthesized inactive nitrogen mustard prodrug that is selectively cleaved to a cytotoxic aziridine (AST-2660) via aldo-keto reductase family 1 member C3 (AKR1C3). The purpose of this study was to investigate the pharmacokinetics and tissue distribution of the prodrug, AST-001, and its active metabolite, AST-2660, in mice, rats, and monkeys. After single and once daily intravenous bolus doses of 1.5, 4.5, and 13.5 mg/kg AST-001 to Sprague-Dawley rats and once daily 1 h intravenous infusions of 0.5, 1.5, and 4.5 mg/kg AST-001 to cynomolgus monkeys, AST-001 exhibited dose-dependent pharmacokinetics and reached peak plasma levels at the end of the infusion. No significant accumulation and gender differences were observed after 7 days of repeated dosing. In rats, the half-life of AST-001 was dose independent and ranged from 4.89 to 5.75 h. In cynomolgus monkeys, the half-life of AST-001 was from 1.66 to 5.56 h and increased with dose. In tissue distribution studies conducted in Sprague-Dawley rats and in liver cancer PDX models in female athymic nude mice implanted with LI6643 or LI6280 HepG2-GFP tumor fragments, AST-001 was extensively distributed to selected tissues. Following a single intravenous dose, AST-001 was not excreted primarily as the prodrug, AST-001 or the metabolite AST-2660 in the urine, feces, and bile. A comprehensive analysis of the preclinical data and inter-species allometric scaling were used to estimate the pharmacokinetic parameters of AST-001 in humans and led to the recommendation of a starting dose of 5 mg/m2 in the first-in-human dose escalation study.


Subject(s)
Nitrogen Mustard Compounds , Prodrugs , Animals , Female , Mice , Rats , Aldo-Keto Reductase Family 1 Member C3/drug effects , Macaca fascicularis , Mice, Nude , Rats, Sprague-Dawley , Nitrogen Mustard Compounds/pharmacokinetics , Aziridines/pharmacokinetics , Dose-Response Relationship, Drug
5.
Cell Res ; 34(3): 214-231, 2024 03.
Article in English | MEDLINE | ID: mdl-38332199

ABSTRACT

Flickering light stimulation has emerged as a promising non-invasive neuromodulation strategy to alleviate neuropsychiatric disorders. However, the lack of a neurochemical underpinning has hampered its therapeutic development. Here, we demonstrate that light flickering triggered an immediate and sustained increase (up to 3 h after flickering) in extracellular adenosine levels in the primary visual cortex (V1) and other brain regions, as a function of light frequency and intensity, with maximal effects observed at 40 Hz frequency and 4000 lux. We uncovered cortical (glutamatergic and GABAergic) neurons, rather than astrocytes, as the cellular source, the intracellular adenosine generation from AMPK-associated energy metabolism pathways (but not SAM-transmethylation or salvage purine pathways), and adenosine efflux mediated by equilibrative nucleoside transporter-2 (ENT2) as the molecular pathway responsible for extracellular adenosine generation. Importantly, 40 Hz (but not 20 and 80 Hz) light flickering for 30 min enhanced non-rapid eye movement (non-REM) and REM sleep for 2-3 h in mice. This somnogenic effect was abolished by ablation of V1 (but not superior colliculus) neurons and by genetic deletion of the gene encoding ENT2 (but not ENT1), but recaptured by chemogenetic inhibition of V1 neurons and by focal infusion of adenosine into V1 in a dose-dependent manner. Lastly, 40 Hz light flickering for 30 min also promoted sleep in children with insomnia by decreasing sleep onset latency, increasing total sleep time, and reducing waking after sleep onset. Collectively, our findings establish the ENT2-mediated adenosine signaling in V1 as the neurochemical basis for 40 Hz flickering-induced sleep and unravel a novel and non-invasive treatment for insomnia, a condition that affects 20% of the world population.


Subject(s)
Sleep Initiation and Maintenance Disorders , Humans , Child , Animals , Mice , Sleep , Signal Transduction , Adenosine , Astrocytes
6.
HLA ; 103(2): e15370, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38319000

ABSTRACT

HLA-B*48:01:13 differs from HLA-B*48:01:01:01 by one nucleotide in exon 5.


Subject(s)
HLA-B Antigens , Nucleotides , Humans , Alleles , Sequence Analysis, DNA , HLA-B Antigens/genetics , China
7.
J Formos Med Assoc ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38331639

ABSTRACT

BACKGROUND: The dysfunction of the ABO glycosyltransferase (GT) enzyme, which is caused by mutations in the ABO gene, can lead to weak ABO phenotypes. In this study, we have discovered a novel weak ABO subgroup allele and investigated the underlying mechanism to causing its Aweak phenotype. MATERIALS AND METHODS: The ABO phenotyping and genotyping were performed by serological studies and direct DNA sequencing of ABO gene. The role of the novel single nucleotide polymorphism (SNP) was evaluated by 3D model, predicting protein structure changes, and in vitro expression assay. The total glycosyltransferase transfer capacity in supernatant of transfected cells was examined. RESULTS: The results of serological showed the subject was Aweak phenotype. A novel SNP c.424A > G (p. M142V) based on ABO*A1.02 was identified, and the genotype of the subject was AW-var/O.01 according to the gene analysis. In silico analysis showed that the SNP c.424A > G on the A allele may change the local conformation by damaging the hydrogen bonds and reduce the stability of GT. In vitro expression study showed that SNP p.M142V impaired H to A antigen conversion, although it did not affect the generation of A glycosyltransferase (GTA). CONCLUSIONS: One novel AW allele was identified and the SNP c.424A > G (p.M142V) can cause the Aweak phenotype through damaging the hydrogen bonds and reducing stability of the GTA.

8.
Cancer Med ; 12(24): 22038-22046, 2023 12.
Article in English | MEDLINE | ID: mdl-38063405

ABSTRACT

BACKGROUND: Fruquintinib has demonstrated significant improvement in overall survival (OS) among previously treated metastatic colorectal cancer (mCRC) patients. However, the utilization of fruquintinib has been constrained by various toxicities, such as hand-foot skin reaction (HFSR) and hypertension, particularly in elderly patients with reduced tolerance to the standard dosage. This study aims to investigate the efficacy and safety of fruquintinib dose-escalation strategy for elderly refractory mCRC patients. PATIENTS AND METHODS: This open-label, single-arm, phase II trial included patients aged 65 years or over with mCRC who had progressed after two or more lines of chemotherapy. Fruquintinib was administered for 21 consecutive days of a 28-day treatment cycle. The starting dose of fruquintinib was 3 mg/day and escalated to 4 mg/day in Week 2 and 5 mg/day in Week 3 if no significant drug-related toxicity was observed. The highest tolerated dose from Cycle 1 would be administered in Cycle 2 and all subsequent cycles. Before commencing treatment, all enrolled patients underwent a G8 questionnaire and comprehensive geriatric assessments. The primary endpoint of the study was progression-free survival (PFS). RESULTS: A total of 29 patients were enrolled and all started fruquintinib at 3 mg/day. Fifteen patients (51.7%) were subsequently escalated to 4 mg/day and 4 (13.8%) to 5 mg/day. Only four (13.8%) patients discontinued treatment due to adverse events (AEs). The median PFS was 3.8 months (95% CI, 2.7-4.9), and the median OS was 7.6 months (95% CI, 6.5-8.7). Treatment-related adverse events (TRAEs) were observed in all 29 patients (100%). The most frequently occurring (>10%) TRAEs greater than Grade 3 were HFSR (20.7%), hypertension (20.7%), and diarrhea (10.3%). CONCLUSION: Our study indicated that a dose of 4 mg/day was well tolerated by most elderly patients, suggesting that fruquintinib dose-escalation strategy during the first cycle could serve as a viable alternative to the standard 5 mg/day dosing.


Subject(s)
Benzofurans , Colonic Neoplasms , Colorectal Neoplasms , Hypertension , Rectal Neoplasms , Aged , Humans , Colorectal Neoplasms/pathology , Colonic Neoplasms/drug therapy , Benzofurans/adverse effects , Rectal Neoplasms/drug therapy , Hypertension/chemically induced , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
9.
Vox Sang ; 118(10): 895-900, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37563965

ABSTRACT

BACKGROUND AND OBJECTIVES: ABO antigens are produced from H antigen by the activity of glycosyltransferase enzyme encoded by the ABO gene. Variants in the ABO gene can produce a weak ABO phenotype. In this study, we identify a novel ABO*BW allele and investigate the underlying mechanism leading to the Bweak phenotype. MATERIALS AND METHODS: The ABO phenotype and genotype of the sample were determined using serological and direct DNA sequencing methods. We assessed the impact of the novel variant by three-dimensional modelling to predict protein stability changes (ΔΔG), and carried out an in vitro expression assay. The total glycosyltransferase transfer capacity in the supernatant of transfected cells was also examined. RESULTS: Serological analysis confirmed the Bweak phenotype in the subject, and gene sequencing identified a novel variant c.761C>T (p.A254V) on the ABO*B.01 allele, resulting in a BW-var/O.01.02 genotype. In silico analysis suggested that the p.A254V variant on the B allele may reduce the stability of glycosyltransferase B (GTB), as indicated by the ΔΔG values. In vitro expression studies showed that the variant p.A254V impaired H to B antigen conversion, although it did not affect the expression of GTB. CONCLUSION: We identified a novel BW allele and demonstrated that the variant c.761C>T (p.A254V) can cause the Bweak phenotype by reducing the stability of GTB.

10.
Exp Neurol ; 368: 114500, 2023 10.
Article in English | MEDLINE | ID: mdl-37553048

ABSTRACT

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is involved in cognitive impairment of children. Chronic intermittent hypoxia (CIH) is considered as the critical pathophysiological mechanism of OSAHS. Calcium sensitive receptor (CaSR) mediated apoptosis in many neurological disease models by endoplasmic reticulum stress (ERS)-related pathway. However, little is known about the role of CaSR in OSAHS-induced cognitive dysfunction. In this study, we explored the effect of CaSR on CIH-induced cognitive impairment and possible mechanisms on regulation of PERK-ATF4-CHOP pathway in vivo and in vitro. CIH exposed for 9 h in PC12 cells and resulted in the cell apoptosis, simulating OSAHS-induced neuronal injury. CIH upregulated the level of CaSR, p-PERK, ATF4 and CHOP, contributing to the cell apoptosis. Treated with CaSR inhibitor (NPS-2143) or p-PERK inhibitor (GSK2656157) before CIH exposure, CIH-induced PC12 cell apoptosis was alleviated via inhibition of CaSR by downregulating p-PERK, ATF4 and CHOP. In addition, we established CIH mice model. With CIH exposure for 4 weeks in mice, more spatial memory errors were observed during 8-arm radial maze test. CIH significantly increased apoptotic cells in hippocampus via upregulating cleaved Caspase-3 and downregulating ratio of Bcl-2 to Bax. Besides, treatment of CaSR inhibitor alleviated the hippocampal neuronal apoptosis following CIH with downregulated p-PERK, ATF4 and CHOP, suggesting that CaSR contributed to CIH-induced neuronal apoptosis in hippocampus via ERS pathway. Sum up, our results demonstrated that CaSR accelerated hippocampal apoptosis via PERK-ATF4-CHOP pathway, holding a critical function on CIH-mediated cognitive impairment. Conversely, inhibition of CaSR suppressed PERK-ATF4-CHOP pathway and alleviated cognitive impairment.


Subject(s)
Cognitive Dysfunction , Sleep Apnea, Obstructive , Rats , Mice , Animals , Receptors, Calcium-Sensing , Hypoxia , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal , Apoptosis , Endoplasmic Reticulum Stress
11.
Front Neurol ; 14: 1107086, 2023.
Article in English | MEDLINE | ID: mdl-37265465

ABSTRACT

Objective: Obstructive sleep apnea (OSA) seriously affects the children's cognitive functions, but the neuroimaging mechanism of cognitive impairment is still unclear. The purpose of our study was to explore the difference in brain local gray matter volume (GMV) between children with OSA and non-OSA, and the correlation between the difference regions of brain gray matter volume and cognitive, the severity of OSA. Method: Eighty-three children aged 8-13 years were recruited in our study, 52 children were diagnosed as OSA by polysomnography, and 31 as the non-OSA. All the subjects were underwent high-resolution 3-dimensional T1-weighted magnetic resonance images. The voxel-based morphometry (VBM) was be used to analyse the local GMV. The Das-Naglieri cognitive assessment system (DN: CAS) was used to assess the subjects' cognitive. The difference of local GMV between the two groups was analyzed by two-sample T-test. The PSG variables and the scores of DN: CAS between the OSA group and non-OSA group were compared by independent samples t-tests. Pearson correlation was used to calculate the association between the difference areas of gray matter volumes in brain and DN: CAS scores, obstructive apnea/hypopnea index (OAHI, an index of the severity of OSA). Results: The gray matter volume of the right Middle Frontal Gyrus (MFG_R) in OSA children were larger than the non-OSA children, and the OSA children had lower scores of the Word Series in DN: CAS. There was negative correlation between the scores of Expressive Attention in DN: CAS and the gray matter volume of the right middle frontal gyrus, and it was no significantly correlation between OAHI and the gray matter volume of the right middle frontal gyrus. Conclusion: Our results suggest that the development of gray matter volume in frontal cortex, which associated with attention, were sensitive to the effects of OSA, provides neuroimaging evidence for cognitive impairment in children with OSA.

12.
HLA ; 102(3): 365-366, 2023 09.
Article in English | MEDLINE | ID: mdl-37315573

ABSTRACT

HLA-B*51:381 differs from HLA-B*51:01:01:01 by one nucleotide in exon 5.


Subject(s)
HLA-B Antigens , Humans , Alleles , East Asian People/genetics , HLA-B Antigens/genetics , Nucleotides , Sequence Analysis, DNA
13.
HLA ; 102(4): 524-525, 2023 10.
Article in English | MEDLINE | ID: mdl-37381595

ABSTRACT

HLA-B*40:536N differs from HLA-B*40:03:01:01 by one nucleotide in exon 3.


Subject(s)
East Asian People , HLA-B Antigens , Humans , Alleles , Sequence Analysis, DNA , HLA-B Antigens/genetics , Nucleotides
14.
Front Pediatr ; 11: 1141348, 2023.
Article in English | MEDLINE | ID: mdl-37325347

ABSTRACT

Background: We investigated the expression and the potential value of plasma transfer RNA-derived fragments (tRFs) of children with obstructive sleep apnea-hypopnea syndrome (OSAHS) as screening biomarkers. Methods: At first, we randomly selected five plasma samples from the case group and the control group for high-throughput RNA sequencing. Secondly, we screened two tRFs with different expression between the two groups, amplified it by quantitative reverse transcription-PCR (qRT-PCR) on all samples. Then we analyzed the diagnostic value of the tRFs and their correlation with the clinical data. Results: A total of 50 OSAHS children and 38 healthy controls were included. Our results demonstrated that the plasma levels of tRF-16-79MP9PD and tRF-28-OB1690PQR304 were significantly down-regulated in OSAHS children. Receiver operating characteristic curve (ROC) showed that the area under the curve (AUC) of tRF-16-79MP9PD and tRF-28-OB1690PQR304 was 0.7945 and 0.8276. In addition, the AUC of the combination reached 0.8303 with 73.46% and 76.42% sensitivity and specificity. Correlation analysis showed that the degree of tonsil enlargement, hemoglobin (Hb) and triglyceride (TG). were related to the expression levels of tRF-16-79MP9PD and tRF-28-OB1690PQR304. Multivariable linear regression analysis showed that degree of tonsil enlargement, Hb and TG related to tRF-16-79MP9PD while degree of tonsil enlargement and Hb related to tRF-28-OB1690PQR304. Conclusions: The expression levels of tRF-16-79MP9PD and tRF-28-OB1690PQR304 in the plasma of OSAHS children decreased significantly which were closely related to the degree of tonsil enlargement, Hb and TG, may become novel biomarkers for the diagnosis of pediatric OSAHS.

15.
HLA ; 102(3): 348-349, 2023 09.
Article in English | MEDLINE | ID: mdl-37161862

ABSTRACT

HLA-A*02:07:23 differs from HLA-A*02:07:01:01 by one nucleotide in exon 2.


Subject(s)
HLA-A Antigens , Humans , Alleles , East Asian People/genetics , HLA-A Antigens/genetics , Nucleotides , Sequence Analysis, DNA
16.
Int Immunopharmacol ; 116: 109813, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37254290

ABSTRACT

OBJECTIVE: Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is a sleep respiratory disease associated with cognitive impairment, The nuclear factor erythroid 2 related factor 2 (Nrf2) plays a neuroprotective role. This study was designed to investigate the mechanism of Nrf2 protecting neural cells from endoplasmic reticulum stress (ERS), induced by chronic intermittent hypoxia (CIH) and sleep fragmentation (SF) which caused cognitive impairment in mice. METHODS: Establishment of CIH and SF mice to simulate OSAHS mouse model. An eight-arm maze behavior test measured the cognitive function of mice, and Nissl staining and TUNEL staining were used to detect pathological changes in hippocampal neurons. The expression of ERS and Nrf2 and its downstream related mRNAs and proteins were detected by qRT-PCR and Western blotting. RESULTS: CIH and SF lead to cognitive impairment in mice, and Sulforaphane (SFN, Nrf2 agonist) plays a protective role, while Nrf2-KO aggravates the cognitive impairment. CIH and SF reduced the number of Nissl bodies in neurons and induced apoptosis. The mRNA levels of BiP, CHOP, Nrf2, GCLC and Prdx1 in CIH, SF and CIH + SF groups were increased (p = 0.001), whereas the mRNA levels of BiP and CHOP in the CIH + SF + SFN group were decreased (p = 0.02) while those of Nrf2 and Prdx1 were increased (p = 0.005). The CIH + SF + Nrf2-KO group, the mRNA levels of CHOP were increased (p = 0.001) while Nrf2, GCLC and Prdx1 were decreased (p = 0.001). The protein levels of CHOP and active Caspase-12 in CIH, SF, CIH + SF and CIH + SF + Nrf2-KO groups were increased (p = 0.03), while those of Prdx1 and Nrf2 were increased (p = 0.03) in the CIH + SF + SFN group, while decreased (p = 0.02) in the Nrf2-KO group. CONCLUSIONS: Chronic intermittent hypoxia(CIH) and sleep fragmentation(SF) could aggravate the inflammatory response of nerve cells through endoplasmic reticulum stress, leading to apoptosis of nerve cells, and causing cognitive impairment in mice.Nrf2 alleviates cognitive impairment induced by chronic intermittent hypoxia and sleep fragmentation by modulating endoplasmic reticulum stress. Activation of Nrf2 protects cognitive impairment through the Nrf2-Prdx1 signaling pathway.


Subject(s)
Cognitive Dysfunction , NF-E2-Related Factor 2 , Sleep Apnea, Obstructive , Animals , Mice , Disease Models, Animal , Hypoxia/complications , NF-E2-Related Factor 2/genetics , Sleep Apnea, Obstructive/complications , Sleep Deprivation/complications
17.
BMC Pediatr ; 23(1): 197, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37101156

ABSTRACT

PURPOSE: We investigated changes in plasma transfer RNA related fragments (tRF) in children with obstructive sleep apnea-hypopnea syndrome (OSAHS) and the potential value as a disease marker. METHODS: Firstly, we randomly selected five plasma samples from the case group and the control group for high-throughput RNA sequencing. Secondly, we screened one tRF with different expression between the two groups, amplified it by quantitative reverse transcription-PCR (qRT-PCR) and sequenced the amplified product. After confirming that the qRT-PCR results were consistent with the sequencing results and the sequence of the amplified product contained the original sequence of the tRF, we performed qRT-PCR on all samples. Then we analyzed the diagnostic value of the tRF and its correlation with some clinical data. RESULTS: A total of 50 OSAHS children and 38 control children were included in this study. There were significant differences in height, serum creatinine (SCR) and total cholesterol (TC) between the two groups. The plasma expression levels of tRF-21-U0EZY9X1B (tRF-21) were significantly different between the two groups. Receiver operating characteristic curve (ROC) showed that it had valuable diagnostic index, with area under the curve (AUC) of 0.773, 86.71% and 63.16% sensitivity and specificity. CONCLUSIONS: The expression levels of tRF-21 in the plasma of OSAHS children decreased significantly which were closely related to hemoglobin, mean corpuscular hemoglobin, triglyceride and creatine kinase-MB, may become novel biomarkers for the diagnosis of pediatric OSAHS.


Subject(s)
Sleep Apnea, Obstructive , Child , Humans , Biomarkers , RNA, Transfer , ROC Curve , Sensitivity and Specificity , Sleep Apnea, Obstructive/diagnosis , Syndrome , Case-Control Studies
20.
Mol Neurobiol ; 60(4): 2099-2115, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36600080

ABSTRACT

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is typically characterized by chronic intermittent hypoxia (CIH), associated with cognitive dysfunction in children. Calcium-sensing receptor (CaSR) mediates the apoptosis of hippocampal neurons in various diseases. However, the effect of CaSR on OSAHS remains elusive. In the present study, we investigated the role of CaSR in CIH-induced memory dysfunction and underlying mechanisms on regulation of PKC-ERK1/2 signaling pathway in vivo and in vitro. CIH exposures for 4 weeks in mice, modeling OSAHS, contributed to cognitive dysfunction. CIH accelerated apoptosis of hippocampal neurons and resulted in the synaptic plasticity deficit via downregulated synaptophysin (Syn) protein level. The mice were intraperitoneally injected with CaSR inhibitor (NPS2143) 30 min before CIH exposure and the results demonstrated CaSR inhibitor alleviated the apoptosis and synaptic plasticity deficit in the hippocampus of CIH mice. We established intermittent hypoxia PC12 cell model and found that the activation of CaSR accelerated CIH-induced PC12 apoptosis and synaptic plasticity deficit by upregulated p-ERK1/2 and PKC. Overall, our findings revealed that CaSR held a critical function on CIH-induced cognitive dysfunction in mice by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity via augmenting CaSR-PKC-ERK1/2 pathway; otherwise, inhibition of CaSR alleviated CIH-induced cognitive dysfunction.


Subject(s)
Cognitive Dysfunction , Sleep Apnea, Obstructive , Mice , Animals , Receptors, Calcium-Sensing , MAP Kinase Signaling System , Hypoxia/complications , Cognitive Dysfunction/complications , Sleep Apnea, Obstructive/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...